Steady-state analysis and design of activated sludge processes with a model including compressive settling

Stefan Diehl1 Jesús Zambrano2 Bengt Carlsson2

1Centre for Mathematical Sciences, Lund University, Sweden

2Department of Information Technology, Uppsala University, Sweden

Presentation at Watermatex, Gold Coast, June 2015
Motivation for this work

Despite successful benchmark simulation models, authors write
Motivation for this work

Despite successful benchmark simulation models, authors write

“WWTP design is mainly based on standard design rules and knowledge of human experts.”
Motivation for this work

Despite successful benchmark simulation models, authors write

“WWTP design is mainly based on standard design rules and knowledge of human experts.”

Reduced steady-state model with only few equations can be preferable, e.g., in the first design considerations (plant area)
Motivation for this work

Despite successful benchmark simulation models, authors write

“WWTP design is mainly based on standard design rules and knowledge of human experts.”

Reduced steady-state model with only few equations can be preferable, e.g., in the first design considerations (plant area)

Previous publications: ideal point settler or hindered sedimentation

This work: include compressive settling
Reduced model of ASP in normal operation

Volumetric flow rate \(Q \) [m\(^3\)/h]
Soluble substrate \(S \) [kg/m\(^3\)]
Particulate biomass \(X \) [kg/m\(^3\)]
Recycle ratio \(r \) [-]
Wastage ratio \(w \) [-]

sludge blanket level \(z_{sb} \)
Equations for biological reactor

Completely stirred tank of volume $V = A_R H_R$

Standard mass balances:

\[
V \frac{dS^*}{dt} = Q S_{\text{in}} + r Q S_r - Q (1 + r) S^* - V \frac{\mu(S^*, X^*) X^*}{Y} \]
consumed

\[
V \frac{dX^*}{dt} = r Q X_r - Q (1 + r) X^* + V (\mu(S^*, X^*) - b) X^* \]

Biomass decay rate b

Growth kinetics (Monod, Contois, Haldane/Andrews, Webb):

\[
\mu(S, X) = \hat{\mu} \frac{S(1 + \beta S/K_i)}{K_s + K_C X + S + S^2/K_i}
\]

For design procedure (so far): $\mu(S)$ (Monod, Haldane/Andrews)
Focus on normal operation with $X_e = 0$ and sludge blanket at z_{sb}
Equation for particulate concentration in settler

Focus on normal operation with $X_e = 0$ and sludge blanket at z_{sb}

Bürger-Diehl PDE model for thickening zone:

$$\frac{\partial X}{\partial t} = \frac{\partial}{\partial z} \left(- \left(v_{hs}(X) + q \right) X + d(X) \frac{\partial X}{\partial z} \right)$$

bulk velocity $q = \frac{(r + w)Q}{A_S}$
Equation for particulate concentration in settler

Focus on normal operation with \(X_e = 0 \) and sludge blanket at \(z_{sb} \)

Bürger-Diehl PDE model for thickening zone:

\[
\frac{\partial X}{\partial t} = \frac{\partial}{\partial z} \left(-\left(v_{hs}(X) + q \right) X + d(X) \frac{\partial X}{\partial z} \right)
\]

bulk velocity \(q = \frac{(r + w)Q}{A_S} \)

Note: Steady-state equation of PDE is ODE for \(X_{SS}(z) \), which is discontinuous (special mathematical theory)
Steady-state solutions $X_{SS}(z)$ in thickening zone

Compression starts above the critical concentration $X_c = 5 \text{ kg/m}^3$

$q = \text{constant}$
Steady-state solutions $X_{SS}(z)$ in thickening zone

Compression starts above the critical concentration $X_c = 5 \text{ kg/m}^3$

$q = \text{constant}$

$X_r = \text{constant}$
Steady-state solutions $X_{ss}(z)$ in thickening zone

Compression starts above the critical concentration $X_c = 5 \text{ kg/m}^3$

$q = \text{constant}$

$X_r = \text{constant}$

Observation: sludge blanket level z_{sb} depends on q and X_r
Steady-state solutions $X_{SS}(z)$ in thickening zone

Compression starts above the critical concentration $X_c = 5 \text{ kg/m}^3$

$q = \text{constant}$

$q = 0.1$
$q = 0.3$
$q = 0.5$
$q = 0.7$
$q = 0.9$
$q = 1.1$
$q = 1.3$

$X_r = \text{constant}$

$X_r = 6$
$X_r = 7$
$X_r = 8$
$X_r = 9$
$X_r = 10$
$X_r = 11$

Observation: sludge blanket level z_{sb} depends on q and X_r

Result: capture this relation with algebraic equation replacing ODE
Result: For a given wanted sludge blanket level z_{sb}:

$$X_r = U_{z_{sb}}(q) := X_{z_{sb}}^\infty \left(1 + \frac{\hat{q}_{z_{sb}}}{q + \tilde{q}_{z_{sb}}}\right), \quad X_{z_{sb}}^\infty, \hat{q}_{z_{sb}}, \tilde{q}_{z_{sb}} \text{ parameters}.$$
Steady-state equation for settler in normal operation

Result: For a given wanted sludge blanket level z_{sb}:

$$X_r = U_{z_{sb}}(q) := X_{z_{sb}}^\infty \left(1 + \frac{\hat{q}_{z_{sb}}}{q + \tilde{q}_{z_{sb}}}\right), \quad X_{z_{sb}}^\infty, \hat{q}_{z_{sb}}, \tilde{q}_{z_{sb}} \text{ parameters}$$

The flux capacity:

$$\Phi_{z_{sb}}(q) := q U_{z_{sb}}(q)$$

Limiting flux because of compression!
Steady-state equation for settler in normal operation

Result: For a given wanted sludge blanket level z_{sb}:

$$X_r = U_{z_{sb}}(q) := X_{z_{sb}}^{\infty} \left(1 + \frac{\hat{q}_{z_{sb}}}{q + \tilde{q}_{z_{sb}}} \right), \quad X_{z_{sb}}^{\infty}, \hat{q}_{z_{sb}}, \tilde{q}_{z_{sb}} \text{ parameters}$$

The flux capacity: $\Phi_{z_{sb}}(q) := q U_{z_{sb}}(q)$

Limiting flux because of compression!

Set of algebraic eqs for ASP in steady state

Solutions depend on r

For results and nice graphs, see paper
Design of ASP: total area

Solve equations for horizontal areas of reactor A_R and settler A_S:

$$A_{ASP} = A_R + A_S = \frac{Qw(1 + r)}{(r + w)H_R(\mu(S^*_{ref}) - b)} + \frac{Q(r + w)(w_{max}(S_{in}) - w)}{(\hat{q}_{zs} + \tilde{q}_{zs})(w - w_{min}(S_{in}))}$$

$$r > 0, \quad w_{min}(S_{in}) < w < w_{max}(S_{in})$$
Design of ASP: total area

Solve equations for horizontal areas of reactor A_R and settler A_S:

$$A_{ASP} = A_R + A_S = \frac{Qw(1 + r)}{(r + w)H_R(\mu(S^*_\text{ref}) - b)} + \frac{Q(r + w)(w_{\text{max}}(S_{\text{in}}) - w)}{(\hat{q}_{zsb} + \tilde{q}_{zsb})(w - w_{\text{min}}(S_{\text{in}}))}$$

$$r > 0, \quad w_{\text{min}}(S_{\text{in}}) < w < w_{\text{max}}(S_{\text{in}})$$

- A_{ASP} proportional to Q
- A_{ASP} increases with S_{in}
- Small interval $w_{\text{min}}(S_{\text{in}}) < w < w_{\text{max}}(S_{\text{in}})$
- w_{min} corresponds to $X_{r,\text{max}}$ and vice versa
Design of ASP: total area

Solve equations for horizontal areas of reactor A_R and settler A_S:

$$A_{ASP} = A_R + A_S = \frac{Qw(1 + r)}{(r + w)H_R(\mu(S^*_r) - b)} + \frac{Q(r + w)(w_{\max}(S_{in}) - w)}{(\hat{q}_{zsb} + \check{q}_{zsb})(w - w_{\min}(S_{in}))}$$

$r > 0$, $w_{\min}(S_{in}) < w < w_{\max}(S_{in})$

- A_{ASP} proportional to Q
- A_{ASP} increases with S_{in}
- Small interval $w_{\min}(S_{in}) < w < w_{\max}(S_{in})$
- w_{\min} corresponds to $X_{r,max}$ and vice versa
Solve equations for horizontal areas of reactor \(A_R \) and settler \(A_S \):

\[
A_{ASP} = A_R + A_S = \frac{Qw(1 + r)}{(r + w)H_R(\mu(S_{ref}^*) - b)} + \frac{Q(r + w)(w_{max}(S_{in}) - w)}{(\dot{q}_{zsb} + \dot{q}_{zsb})(w - w_{min}(S_{in}))}
\]

\[
r > 0, \; w_{min}(S_{in}) < w < w_{max}(S_{in})
\]

- \(A_{ASP} \) proportional to \(Q \)
- \(A_{ASP} \) increases with \(S_{in} \)
 - Small interval \(w_{min}(S_{in}) < w < w_{max}(S_{in}) \)
 - \(w_{min} \) corresponds to \(X_{r,\text{max}} \) and vice versa
Design of ASP: total area

Solve equations for horizontal areas of reactor A_R and settler A_S:

$$A_{ASP} = A_R + A_S = \frac{Qw(1 + r)}{(r + w)H_R(\mu(S^*_\text{ref}) - b)} + \frac{Q(r + w)(w_{\text{max}}(S_{\text{in}}) - w)}{(\hat{q}_{zb} + \tilde{q}_{zb})(w - w_{\text{min}}(S_{\text{in}}))}$$

$$r > 0, \; w_{\text{min}}(S_{\text{in}}) < w < w_{\text{max}}(S_{\text{in}})$$

- A_{ASP} proportional to Q
- A_{ASP} increases with S_{in}
- Small interval $w_{\text{min}}(S_{\text{in}}) < w < w_{\text{max}}(S_{\text{in}})$
- w_{min} corresponds to $X_{r,\text{max}}$ and vice versa
Design of ASP: total area

Solve equations for horizontal areas of reactor A_R and settler A_S:

$$A_{ASP} = A_R + A_S = \frac{Qw(1 + r)}{(r + w)H_R(\mu(S_{ref}^*) - b)} + \frac{Q(r + w)(w_{max}(S_{in}) - w)}{\hat{q}_{zs} + \tilde{q}_{zs}(w - w_{min}(S_{in}))}$$

$$r > 0, \ w_{min}(S_{in}) < w < w_{max}(S_{in})$$

- A_{ASP} proportional to Q
- A_{ASP} increases with S_{in}
- Small interval $w_{min}(S_{in}) < w < w_{max}(S_{in})$
- w_{min} corresponds to $X_{r,max}$ and vice versa
Design of ASP: total area

Solve equations for horizontal areas of reactor A_R and settler A_S:

$$A_{ASP} = A_R + A_S = \frac{Q w (1 + r)}{(r + w) H_R (\mu (S^*_{ref}) - b)} + \frac{Q (r + w) (w_{max}(S_{in}) - w)}{(\hat{q}_{zsb} + \hat{q}_{zsb}) (w - w_{min}(S_{in}))}$$

$$r > 0, \ w_{min}(S_{in}) < w < w_{max}(S_{in})$$

- A_{ASP} proportional to Q
- A_{ASP} increases with S_{in}
- Small interval $w_{min}(S_{in}) < w < w_{max}(S_{in})$
- w_{min} corresponds to $X_{r, max}$ and vice versa

Choose wanted z_{sb}, Q, S_{in}, and S^*_{ref}
Design of ASP: total area

Solve equations for horizontal areas of reactor A_R and settler A_S:

$$A_{ASP} = A_R + A_S = \frac{Qw(1 + r)}{(r + w)H_R(\mu(S_{ref}^*) - b)} + \frac{Q(r + w)(w_{max}(S_{in}) - w)}{(\hat{q}_{zsb} + \check{q}_{zsb})(w - w_{min}(S_{in}))}$$

$r > 0$, $w_{min}(S_{in}) < w < w_{max}(S_{in})$

- A_{ASP} proportional to Q
- A_{ASP} increases with S_{in}
- Small interval $w_{min}(S_{in}) < w < w_{max}(S_{in})$
- w_{min} corresponds to $X_{r, max}$ and vice versa

Choose wanted z_{sb}, Q, S_{in}, and S_{ref}^*

Study $A_{ASP}(r, w)$
Design of ASP: total area given z_{sb}, Q, S_{in}, S_{ref}

Graph and contours of $A_{ASP} = A_{ASP}(r, w)$

Dotted black curves in right plot show ratios A_R/A_{ASP}

One diagram: Decide A_R, A_S and nominal operating point (r, w)
Main conclusions

- **New algebraic equation** $X_r = U_{zs_b}(q)$ means that flux capacity due to compressive settling easily included in analysis
- **Design procedure**: explicit formulas — one diagram
Main conclusions

- New algebraic equation $X_r = U_{sb}(q)$ means that flux capacity due to compressive settling easily included in analysis
- **Design procedure:** explicit formulas — one diagram

Related work: See our poster on a plug-flow reactor + settler

Thank you for your attention!