9th IWA Symposium on Systems Analysis and Integrated Assessment

14 - 17 June 2015
Gold Coast, Queensland, Australia
Haiwei Huang, Siyu Zeng, Xin Dong, Pengfei Du
School of Environment
Tsinghua University, Beijing, China
June, 2015

SWMM-based Daily Substance Flow Analysis for urban drainage system: a case study in Northern Kunming
Outline

- Introduction
- Materials and methods
- Results and discussion
- Conclusions
Total pollution load control in urban area, especially in China

- Time scale: yearly to daily, (even smaller)
- Spatial scale: whole area to individual unit
- Conventional estimation methods are in the long time scale and statics, thus can not be used for improving environmental quality efficiently.

- In 2015/04/02, “Water Pollution Prevention Act Plan” was promulgated, aiming to eliminate effluvial waterbodies in 2020.

severe situation!
Kunming playing an important role in water pollution control program

- Dianchi Lake, one of the most important inland lakes in China, is suffering from serious pollution.
- Kunming, the main city of the basin, contributes more than 75% pollution load to Dianchi Lake every year.
Background information about Kunming

- Area: nearly 300 km²
- Population: over 3 million
- 7 WWTPs
- A hybrid of combined and separated sewers
- Annual precipitation is more than 900mm.

Study Area

- Urban drainage system in Northern Kunming (NK-UDS)
- Area: about 42 km²
- Population: nearly 0.69 million
- Two WWTPs (WWTP 4 & WWTP 5)
- Precipitation: 539mm in 2011
Materials and methods

Sewage pipes

Combined sewers

Storm pipes

WWTP

Receiving waterbodies

Public service

industry

residence

Underlying surfaces

Public service

industry

residence

Underlying surfaces
Materials and methods

SWMM-based model of SFA
- a dynamic and quantitative model with the principle of mass balance in the daily time scale

- Monitoring
- Triangle method
- SWMM model simulation

Framework of NK-UDS and substance flow paths
Materials and methods

MGW: municipal wastewater and groundwater infiltrating into pipes
CW: collected wastewater by WWTPs
UCW: uncollected wastewater
PW: pumped wastewater from WWTP4 to WWTP5
F: flooding
CSO: combined sewer overflows
DDR: direct discharge of rainwater collected by storm sewers
DSR: direct surface runoff
RR: rainwater runoff entering sewer system

i refers to water quantity, COD, SS, TN, TP and NH$_4$-N loads

\[
RR_{1,i} = CW_{4,i} + CW_{5,i} + F_i + CSO_i - MGW_{4,i} - MGW_{5,i}
\]
\[
TW_{4,i} = (CW_{4,i} - PW) \times RC_{4,i}, \quad TW_{5,i} = (CW_{5,i} + PW) \times RC_{5,i}
\]

RC$_{4,i}$ and RC$_{5,i}$ are the pollutant remove coefficients by WWTP4 and WWTP5, separately

\[
UCW_i = \frac{MGW_i}{WCR} - MGW_i
\]

WCR is the wastewater collection rate

RR$_{2,i} = DDR_i$
Results and discussion

- **Discharge patterns of individual unit**
- **Spatial distribution of wastewater**

![Graphs showing discharge patterns and spatial distribution of wastewater](image)
Results and discussion

- Temporal variation of flows from special unit
The horizontal axis is every single day, which is not ranked in chronological order but in ascending order of daily precipitation instead.

- As the precipitation increased, rain-derived pollution increased rapidly.
- During rainy days, DDR and DSR delivered 22.1% contribution of flux into receiving waterbodies, but 69.5% of COD load.
- DDR and DSR contributed 69.9% of flux and 79.4% of COD load on the last day in the figure when the precipitation is 77mm.

- Severe CSO and flooding came out on that day, which contributed 132.5t (12.5%) and 72.7t COD (6.9%) separately.
Results and discussion

The whole year & area result

Municipal Wastewater & Groundwater

- Residential lands
- Public service lands
- Industrial lands
- Ground aquifer

Water (10^4 t)

- COD(t)
- SS(t)
- TN(t)
- TP(t)
- NH_4-N(t)

Water(10^4 t) COD(t) SS(t) TN(t) TP(t) NH_4-N(t)

5155.9 1735.22 14131.1 245.31 13139.0 1245.97

Hybrid Sewer System

- WWTP4 Hybrid Sewer System
- WWTP5 Hybrid Sewer System

Rainwater Runoff

- Urban underlying surfaces
- Roofs
- Roads
- Green Spaces

Rainwater Runoff

- 119.3 13.24 367.1 1.08 137.9 2.68

WWTP4

- 1987.6 228.14 425.8 3.85 82.1 8.03

WWTP5

- 6097.8 625.74 1303.0 14.53 286.3 79.23

Receiving waterbodies
Conclusions

- A SWMM-based model of daily substance flow analysis was conducted to simulate the flows of water, COD, SS, TN, TP and NH$_4$-N in the urban drainage system.
- Substances flow pathways could be identified and the quantity of every single path could be calculated in the daily time scale.
- Different rain-derived pollution sources have their own emission reducing potentials, and thus the results can support water pollution control plans in Kunming.
- Smaller spatial-temporal estimation method should be developed, considering urban drainage system is a dynamic system, especially during the storm period when runoff brings intense impact to UDS.
Thanks for your patience!