System-wide Benchmark Simulation Model for integrated analysis of urban wastewater systems

Ramesh Saagi¹, Xavier Flores-Alsina², Krist. V. Gernaey², Ulf Jeppsson¹

¹ Division of Industrial Electrical Engineering and Automation (IEA), Lund University, Sweden
² Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Denmark
Outline

1. Objective
2. The urban wastewater system (UWS)
3. Modelling the UWS
 - Catchment
 - Sewer network
 - WWTP
 - Receiving water
4. Evaluation criteria
 - River quality based evaluation
5. Results
6. Conclusions
Objective

- Spatial extension to plant-wide BSM
 “Outside the fence” of WWTP

- River quality based evaluation

- Benchmarking of integrated control strategies
The urban wastewater system
Modelling the UWS - Catchment

<table>
<thead>
<tr>
<th>subcatchment</th>
<th>Area (ha)</th>
<th>PE</th>
<th>DWF (m³/d)</th>
<th>Infiltration (m³/d)</th>
<th>Storage tank volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Domestic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Industrial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>99</td>
<td>15,920</td>
<td>2,390</td>
<td>700</td>
<td>5500</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>3,920</td>
<td>590</td>
<td>150</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>2,960</td>
<td>440</td>
<td>200</td>
<td>2000</td>
</tr>
<tr>
<td>4</td>
<td>71</td>
<td>9,600</td>
<td>1,440</td>
<td>500</td>
<td>4000</td>
</tr>
<tr>
<td>5</td>
<td>71</td>
<td>7,840</td>
<td>1,180</td>
<td>1,600</td>
<td>4000</td>
</tr>
<tr>
<td>6</td>
<td>249</td>
<td>39,760</td>
<td>5,960</td>
<td>1,700</td>
<td>15000</td>
</tr>
<tr>
<td>Total</td>
<td>540</td>
<td>80,000</td>
<td>12,000</td>
<td>4850</td>
<td>31500</td>
</tr>
</tbody>
</table>
Modelling the UWS - Catchment

Generation of wastewater

• Domestic
• Industrial
• Stormwater
• Infiltration to sewers
Modelling the UWS – Sewer system

- Sewer transport – Linear reservoir model
- First flush model for particulate pollutants
- Storage tank models
Modelling the UWS – WWTP
Modelling the UWS – River

Hydraulics
- Length of each stretch: 1km
- Total river length: 30km

Biology (RWQM1)
- 18 state variables
 - Organics, biomass, oxygen, nitrogen, phosphorus
- 17 processes
 - Heterotrophs, Autotrophs, Algae
 - Hydrolysis
 - Phosphate processes
Evaluation criteria

River quality based evaluation

- Total exceedance duration
 - NH$_4$
 - DO
Evaluation criteria

River quality based evaluation

- 1-hour max/min conc.
 - 1-hour max. NH4 conc.
 - 1-hour min. DO conc.
Results - Catchment

Domestic

Industry

Infiltration

Rain
Results – Sewer system

Sewer transport – Linear reservoir model

First flush model for particulate pollutants
Results – Sewer system

Storage tanks

Online tanks with valves

Offline tanks with pumps

Online storage

Offline storage
Results - River

Ammonia variation is generally straightforward

DO variation is highly dynamic and depends on various factors
Conclusions

- System-wide extension to BSM2
- Wastewater generation in the catchment
- Sewer transport model with storage tanks
- Biochemical model for simulation of river dynamics
- River quality based evaluation of control strategies
Thank you!

www.sanitas-ithn.eu

The research leading to these results has received funding from the People Program (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013 under REA agreement 289193.

This presentation reflects only the author’s views and the European Union is not liable for any use that may be made of the information contained therein.