A plant-wide aqueous phase module describing pH variations and ion speciation/pairing in wastewater treatment process models

XAVIER FLORES-ALSINA¹, CHRISTIAN KAZADI MBAMBA², KIMBERLY SOLOŃ³, DARKO VRECKO⁴, STEPHAN TAIT², DAMIEN BATSTONE², ULF JEPPSSON³ AND KRIST V. GERNAEY¹
OUTLINE

INTRODUCTION

METHODS

RESULTS

DISCUSSION

CONCLUSIONS
INTRODUCTION

A PLANT-WIDE AQUEOUS PHASE CHEMISTRY MODULE DESCRIBING pH VARIATIONS AND ION SPECIATION/PAIRING INTERFACED WITH INDUSTRY STANDARD MODELS

ALKALINITY

anaerobic digestion
high-strength wastewater nitrification/denitrification
bioP removal
nutrient recovery/precipitation

pH

BIO-KINETICS

WWTP modelling community

PHYSICO-CHEMISTRY
WEAK ACID-BASE CHEMISTRY MODEL

COMPONENTS

<table>
<thead>
<tr>
<th>i/j</th>
<th>formula</th>
<th>$S_{CO_3^{2-}}$</th>
<th>$S_{Al^{3+}}$</th>
<th>$S_{Ca^{2+}}$</th>
<th>$S_{Fe^{2+}}$</th>
<th>$S_{Mg^{2+}}$</th>
<th>S_{Na^+}</th>
<th>log K_i</th>
<th>ΔH^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{CO_3^{2-}}$</td>
<td>CO$_3^{2-}$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$S_{Al^{3+}}$</td>
<td>Al3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$S_{Ca^{2+}}$</td>
<td>Ca2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$S_{Fe^{2+}}$</td>
<td>Fe$^{2+}$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$S_{Mg^{2+}}$</td>
<td>Mg$^{2+}$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_{Na^+}</td>
<td>Na$^+$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$S_{Al(OH)CO_3^{2+}}$</td>
<td>Al(OH)$_2$CO$_3^{2+}$</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.31</td>
<td>0</td>
</tr>
<tr>
<td>$S_{CaCO_3(aq)}$</td>
<td>CaCO$_3$ (aq)</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.22</td>
<td>16</td>
</tr>
<tr>
<td>$S_{CaHCO_3^+}$</td>
<td>CaHCO$_3^+$</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>11.434</td>
<td>0</td>
</tr>
<tr>
<td>$S_{FeHCO_3^+}$</td>
<td>FeHCO$_3^+$</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.429</td>
<td>0</td>
</tr>
<tr>
<td>$S_{H_2CO_3}$</td>
<td>H$_2$CO$_3^+$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.681</td>
<td>-32</td>
</tr>
<tr>
<td>$S_{HCO_3^-}$</td>
<td>HCO$_3^-$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.329</td>
<td>-14.6</td>
</tr>
<tr>
<td>$S_{MgCO_3^{2+}}$</td>
<td>MgCO$_3^{2+}$</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.59</td>
<td>0</td>
</tr>
<tr>
<td>$S_{MgCO_3(aq)}$</td>
<td>MgCO$_3$ (aq)</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.92</td>
<td>10</td>
</tr>
<tr>
<td>$S_{MgHCO_3^+}$</td>
<td>MgHCO$_3^+$</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>11.34</td>
<td>-9.6</td>
</tr>
<tr>
<td>$S_{NaCO_3^-}$</td>
<td>NaCO$_3^-$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.27</td>
<td>-20.35</td>
</tr>
<tr>
<td>$S_{NaHCO_3(aq)}$</td>
<td>NaHCO$_3$ (aq)</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>10.029</td>
<td>-28.33</td>
</tr>
</tbody>
</table>

→ 20 components
→ 120 species

All species can be expressed as combinations of components

LAW OF MASS ACTION (species)

$$a_i = K_i \prod_{j=1}^{N_c} a_{i,j}^v$$

MOLAR CONTRIBUTION BALANCE (component)

$$S_{j,tot} = S_j + \sum_{i=1}^{N_{sp}} v_{i,j} S_i = \frac{a_j}{\gamma} + \sum_{i=1}^{N_{sp}} v_{i,j} \frac{a_i}{\gamma}$$
METHODS

IMPLEMENTATION DETAILS

BIOCHEMICAL MODEL

Ordinary Differential Equations (ODEs)

explicit ODE solver

PHYSICOCHEMICAL MODEL

Nonlinear Algebraic Equations (AEs)

iterative solver with a multi-dimensional Newton-Raphson method
METHODS

WASTEWATER TREATMENT PLANTS UNDER STUDY

WWTP1

WWTP2

WWTP3
METHODS

INTERFACING WITH ASM

ALKALINITY

\[S_{\text{ALK}} \to S_{\text{IC}} \cdot S_{\text{IC}} \] modelled as source-sink compound.

PHOSPHORUS

P is included using source-sink approach (non-reactive) in ASM1 & 3. Compositional analysis (C, H, N, O, P) of all state variables.

CO₂ STRIPPING INCLUDED

K⁺ AND Mg⁺² (ASM2d)

\[S_{\text{K}^+} \text{ and } S_{\text{Mg}^2+} \] are subjected to process dynamics during modelling of formation/release of polyphosphates (\(X_{\text{pp}} \)).

INTERFACING WITH ADM

PHOSPHORUS

P is included using source-sink approach (non-reactive)

CATIONS & ANIONS

\[S_{\text{cat}}: \ S_{\text{Al}^3+} \ S_{\text{Fe}^{2+}} \ S_{\text{Fe}^{3+}} \ S_{\text{Na}^+} \ S_{\text{K}^+} \ S_{\text{Ca}^{2+}} \ S_{\text{Mg}^{2+}} \]

\[S_{\text{an}}: \ S_{\text{Cl}^-} \ S_{\text{NO}_2^-} \ S_{\text{pro}} \ S_{\text{SO}_4^{2-}} \ S_{\text{HS}^-} \]
RESULTS

INFLUENT WASTEWATER

<table>
<thead>
<tr>
<th>Species distribution</th>
<th>INFLUENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{IC}:</td>
<td></td>
</tr>
<tr>
<td>S_{HCO3} - S_{H2CO3}*</td>
<td></td>
</tr>
<tr>
<td>S_{IN}:</td>
<td></td>
</tr>
<tr>
<td>S_{NH4}</td>
<td></td>
</tr>
<tr>
<td>S_{IP}:</td>
<td></td>
</tr>
<tr>
<td>S_{HPO4} - S_{H2PO4}-</td>
<td></td>
</tr>
<tr>
<td>S_{SO4}:</td>
<td></td>
</tr>
<tr>
<td>S_{SO4}-3</td>
<td></td>
</tr>
<tr>
<td>S_{HSO4}</td>
<td></td>
</tr>
<tr>
<td>S_{CaSO4} (aq)</td>
<td></td>
</tr>
<tr>
<td>S_{MgSO4} (aq)</td>
<td></td>
</tr>
<tr>
<td>S_{NaSO4}-</td>
<td></td>
</tr>
<tr>
<td>S_{NH4SO4}-</td>
<td></td>
</tr>
<tr>
<td>S_{ac}:</td>
<td></td>
</tr>
<tr>
<td>S_{ac}-</td>
<td></td>
</tr>
<tr>
<td>S_{Ca-ac}</td>
<td></td>
</tr>
<tr>
<td>S_{Mg-ac}</td>
<td></td>
</tr>
<tr>
<td>S_{Na-ac}</td>
<td></td>
</tr>
<tr>
<td>S_{K-ac}</td>
<td></td>
</tr>
</tbody>
</table>
RESULTS

pH PREDICTIONS IN WWTP1 AND WWTP2

WWTP1

WWTP2

ANOX 1 | ANOX 2

AER 1 | AER 2 | AER 3

CLARIFIER OVER UNDER

ANAER 1

ANAER 2

PLANT LOCATION

pH

- ASM1
- ASM2d
- ASM3
RESULTS

BIOGAS PRODUCTION FOR DIFFERENT SCENARIOS IN WWTP3

\[\text{stronger affinity of Ca}^{+2} \text{ and Mg}^{+2} \text{ for carbonate} \]

\[\text{G}_{CH4} \text{ not affected} \]

\[\text{reduction of } G_{CO2} \text{ at higher ionic loads} \]

\[\text{for the same scenario, even lower } G_{CO2} \text{ for divalent cationic loads compared to monovalent cationic loads} \]

\textit{attributed to:}
ion pairing
species distribution
DISCUSSION

GENERAL APPLICABILITY

- guidelines for interfacing
- can be implemented in other models:
 Barker and Dold model
 TUD extension of ASM2d
 sewer models

USEFULNESS in ASM/ADM

- pH affects biokinetic processes
- speciation model can be useful for estimating NH$_3$ and HNO$_2$

MINTEQ

- experimental validation

VERIFICATION AND EXPERIMENTAL VALIDATION

- need to characterize ionic behaviour
- continuously track ionic strength and activity corrections
The presented pH module is general and versatile, thus, it can be easily added to different ASM/ADM models.

pH and ion speciation are reliably predicted under different conditions (i.e. anaerobic, anoxic, aerobic) in ASM/ADM models.

The solving routine allows simultaneous solution of ODEs and DAEs with multiple algebraic interdependencies.

This approach can be used as a starting point to develop additional models such as multiple mineral precipitation.
Thank you!

The research leading to these results has received funding from the People Program (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013 under REA agreement 289193 and 329349 and from the University of Queensland through the UQ International Scholarships (UQI) and UQ Collaboration and Industry Engagement Fund (UQCIEF). The International Water Association (IWA) is also acknowledged for their promotion of this collaboration through their sponsorship of the IWA Task Group on Generalized Physicochemical Modelling Framework (PCM).

This presentation reflects only the author’s views and the European Union is not liable for any use that may be made of the information contained therein.