Modelling simultaneous methane and ammonium removal in a one-stage aerobic granular sludge reactor

9th IWA Symposium on Systems Analysis and Integrated Assessment
Gold Coast, Queensland, Australia
15 June 2015

Celia M. Castro-Barros, Long T. Ho, Mari-K. H. Winkler, Eveline I. P. Volcke
Concern

Reject water from anaerobic digestion contains NH_4^+ and CH_4

NH_4^+
- Eutrophication
- Toxic for living organisms

CH_4
- Greenhouse gas (34 CO_2 equivalent)
- High impact on global warming
Removal of CH₄ and NH₄⁺

Nitrite-dependent anaerobic methane oxidation (N-damo)

\[3\text{CH}_4 + 8\text{NO}_2^- \rightarrow 3\text{CO}_2 + 4\text{N}_2 \]

could be combined with

Anaerobic ammonium oxidation (anammox)

\[\text{NH}_4^+ + 1.3\text{NO}_2^- \rightarrow \text{N}_2 + 0.3\text{NO}_3^- \]

N-damo vs. anammox bacteria

<table>
<thead>
<tr>
<th></th>
<th>N-damo</th>
<th>anammox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slower growth rate of N-damo - (\mu_{\text{max}}) [d⁻¹]</td>
<td>0.0495</td>
<td>0.052</td>
</tr>
<tr>
<td>≈ biomass yield (autotrophic growth) – Y [gCOD.g⁻¹N*]</td>
<td>0.16</td>
<td>0.17</td>
</tr>
<tr>
<td>Lower nitrite affinity of N-damo - (K_{\text{NO}_2}) [gN.m⁻³]</td>
<td>0.6</td>
<td>0.005</td>
</tr>
<tr>
<td>More sensitive to nitrite inhibition - (K_{i_{\text{NO}_2}}) [gN.m⁻³]</td>
<td>40</td>
<td>400</td>
</tr>
</tbody>
</table>

* N-NH₄⁺ for anammox bacteria and N-NO₂⁻ for N-damo bacteria
Could we combine N-damo and anammox in NON-AERATED granular sludge reactors to simultaneously remove \(\text{CH}_4 \) and \(\text{NH}_4^+ \)?

Granular sludge reactors

- Low footprint
- High SRT
- Different microbial communities
Could we combine N-damo and anammox in NON-AERATED granular sludge reactors to simultaneously remove CH$_4$ and NH$_4$$^+$?

Yes, we can!

IF

- influent CH$_4$:NH$_4$$^+$:NO$_2^-$ ratio close to stoichiometric
- biomass loading rate sufficiently low
- preferably small granules

Winkler et al., Water Research, 2015

Modelling simultaneous anaerobic methane and ammonium removal in a granular sludge reactor

M-K.H Winkler a,b,*, K.F. Ettwig c, T.P.W. Vannecke a, K. Stulliens c, A. Bogdan a, B. Kartal c, E.I.P. Volcke a
Could we combine **N-damo** and **partial nitritation-anammox** in AEROBIC granular sludge reactors to simultaneously remove **CH\(_4\)** and **NH\(_4^+\)** from reject water?
Mathematical model

One dimensional mathematical model – Aquasim
Assessment of bacterial competition in aerobic granules

<table>
<thead>
<tr>
<th></th>
<th>O_2</th>
<th>NH_4^+</th>
<th>NO_2^-</th>
<th>CH_4</th>
<th>NO_3^-</th>
<th>N_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anammox bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-damo bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaerobic Heterot.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerobic Heterot.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Could we combine N-damo and partial nitritation-anammox in AEROBIC granular sludge reactors to simultaneously remove CH$_4$ and NH$_4^+$ from reject water?

Scenario analysis

- Effect of O$_2$ concentration in the bulk liquid
- Effect of influent NH$_4^+$ concentration
- Biomass distribution in the granules

Most optimistic scenario: CH$_4$ stripping not considered
Effect of O_2 concentration in the bulk liquid

$NH_4^+ = 300 \text{ g N.m}^{-3}$
$CH_4 = 100 \text{ g COD.m}^{-3}$
Granule size = 0.75 mm
$O_2 = 0.1-1.5 \text{ gO}_2.\text{m}^{-3}$

Optimum at limited O_2 concentrations:

$0.2 – 0.3 \text{ gO}_2/\text{m}^3$

- If higher, anammox and N-damo bacteria inhibited
- If lower, not enough conversion to NO$_2^-$
Effect of O_2 concentration in the bulk liquid

$NH_4^+ = 300 \text{ g N.m}^{-3}$

$CH_4 = 100 \text{ g COD.m}^{-3}$

Granule size = 0.75 mm

$O_2 = 0.1-1.5 \text{ gO}_2\text{.m}^{-3}$

Optimum at limited O_2 concentrations:

$0.2 - 0.3 \text{ gO}_2\text{/m}^3$

99% CH_4 removal achieved

95% N removal achieved
Effect of influent NH$_4^+$ concentration

\[
\text{NH}_4^+ = 100\text{-}2000 \text{ gN.m}^{-3}
\]
\[
\text{CH}_4 = 100 \text{ gCOD.m}^{-3}
\]
Granule size = 0.75 mm
\[
O_2 = 0.2 \text{ gO}_2\text{.m}^{-3}
\]

Coexistence of anammox and N-damo:

- **Influent NH$_4^+$**
 - 300 – 500 gN/m3

- If higher, anammox bacteria outcompete N-damo bacteria
- If lower, not enough substrate (NH$_4^+$ and NO$_2^-$)
Biomass distribution in the granules

\[\text{NH}_4^+ = 300 \text{ g N/m}^3 \]
\[\text{O}_2 = 0.2 \text{ g O}_2/\text{m}^3 \]
\[\text{CH}_4 = 100 \text{ g COD/m}^3 \]
Granule size = 0.75 mm

- Anammox bacteria located closer to the surface area compared to N-damo bacteria
- AOB dominate the outer oxic part
- no MOB – no aerobic methane oxidation
Conclusions

• Simultaneous NH$_4^+$ and CH$_4$ removal feasible in aerated granular sludge reactors, neglecting CH$_4$ stripping

• Careful control of bulk oxygen concentration required
 - high enough for NH$_4^+$ conversion to NO$_2^-$
 - low enough to prevent inhibition of N-damo and anammox

• Influent ammonium concentration
 - high enough for NO$_2^-$ production
 - low enough to prevent outcompetition of N-damo
Thank you for your attention
Questions?

Celia M. Castro-Barros, Long T. Ho, Mari-K. H. Winkler, Eveline I. P. Volcke

The research leading to these results has received funding from the People Program (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013 under REA agreement 289193.

This presentation reflects only the author’s views and the European Union is not liable for any use that may be made of the information contained therein.